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Abstract—The healthcare wireless medical sensor network is
gradually changing the traditional mode of medical treatments
with the rapid development of Internet of Things. Specifically,
patients’ healthcare data can be continuously collected by med-
ical sensor nodes and transmitted to the medical specialists for
disease monitoring, diagnosis and treatments. Recently, due to its
advantages of low computational and communication overheads
in a multiuser environment, the certificateless aggregate signature
(CLAS) scheme has been adopted to prevent the sensitive health-
care data from being tampered and damaged, thereby ensuring
the integrity and authenticity of data. In order to further improve
the efficiency of CLAS schemes for the sensor nodes with lim-
ited resources, several CLAS schemes without bilinear pairing
have been proposed. However, security issues prevent them from
being fully applied in the practical scenarios. In this article, we
analyze the security of a pairing-free CLAS scheme proposed
by Liu et al. [IEEE Internet of Things Journal, vol. 7, no. 6,
pp. 5256–5266, 2020] by pointing out that their scheme is insecure
against adversaries. After that, we introduce an improved scheme
to solve the security vulnerability. The security proofs show that
our improved scheme is existentially unforgeable against chosen
message attacks under the random oracle model. In addition,
the length of the aggregate signature in our proposal does not
increase with the growth of the number of users, which greatly
reduces the communication cost. Finally, the efficiency of our
scheme is illustrated through both performance analyses and
comparisons of related work.

Index Terms—Certificateless aggregate signature (CLAS),
cryptanalysis, elliptic curve cryptosystem, healthcare wireless
medical sensor networks (HWMSNs), without pairing.
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I. INTRODUCTION

INTERNET of Things (IoT) [1] is an extension and devel-
opment of the traditional Internet, which interconnects of

all things through the data interaction network composed of
kinds of sensor devices and the information media. As an
information technology that can change the way of human
life, IoT maximizes the value of data and resources through
the continuously comprehensive perception of the transaction,
the real-time data sharing and transmission, as well as the effi-
cient information extraction and intelligent analysis. Therefore,
IoT has been deployed in various fields, such as industries,
economies, medical treatments, education, and public services.

Healthcare wireless medical sensor network (HWMSN) [2]
is a significant application of IoT in the medical field. A
typical HWMSN system consists of various medical sensor
nodes (MSNs), a central control agency and a medical cen-
ter. Several medical sensors are placed on the body surface of
patients or implanted into the body to monitor their medical
information and vital signs in real time, including respira-
tion, heartbeat, temperature, blood pressure, blood glucose,
blood oxygen saturation, etc. Patients’ medical data is trans-
mitted from the sensors to the central control for packaging
and integration, then sent to the medical center. Healthcare
professionals make diagnoses and put forward the views of
the treatments for patients according to these medical data.
Obviously, with HWMSN systems, medical resources are inte-
grated and efficiently distributed, and also patients can get the
timely and accurate medical feedback, improving the comfort
of treatments. Although HWMSN is an incipient technology,
its development prospects are certainly remarkable with the
development of IoT.

Nevertheless, there are worrisome privacy and security
issues in the HWMSN system, as the data collected and trans-
mitted by sensors are the healthcare data of patients, which
are very sensitive. In the view of privacy, unauthorized indi-
viduals should be prevented from intercepting patients’ data.
While for security, the data of patients should not be forged,
tampered or injected, since it will lead to a wrong diagnosis
made by healthcare professionals, which may endanger the
life and health of patients. Signature schemes have the ability
to ensure the integrity of data while supporting the unforge-
ability and public verifiability of signatures [3]. However, the
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computational and communication costs of ordinary signature
schemes are enormous when the number of users and signa-
tures is large. As a result, it is inadvisable to apply the ordinary
signature schemes to HWMSN directly.

Certificateless aggregate signature (CLAS) [4] enjoys the
advantages of the certificateless cryptosystem while providing
the functionalities of aggregate signature schemes. In partic-
ular, CLAS supports aggregating n signatures signed by n
different users into a single signature. In this way, a verifier
only needs to verify once to determine whether all signatures
are valid, which greatly reduces the computational and com-
munication costs in the verification procedure. Meanwhile, due
to the characteristic of certificateless, CLAS does not suffer
from the certificate management and key escrow problems in
the public key infrastructure-based and identity-based public
cryptosystems. CLAS is a suitable and powerful solution to
the security issue of HWMSN.

Recently, Gayathri et al. [5] constructed an efficient and
secure certificateless aggregate scheme without pairing for
HWMSN. Their scheme greatly improves the efficiency of
signing and verification, and reduces the communication
overhead of transmitting signatures while claiming to be
secure. However, their solution has a fatal security hole.
Liu et al. [6] put forward effective attack methods to prove that
Gayathri et al.’s CLAS scheme is insecure against two kinds
of attacks. Furthermore, Liu et al. gave an improved CLAS
to solve the security problems. Unfortunately, we found that
Liu et al.’s scheme can not achieve the expected goal.

In this article, we first point out that the security of Liu et al.’s
improved scheme cannot be guaranteed. An attacker is capable
of forging a valid signature easily, which damages the interests
and even health of patients. After that, we fix the security breach
in their scheme to prevent both external and internal attackers
from forging signatures. Specifically, our main contributions
are summarized as follows.

1) First, an attack algorithm is presented to show that
Liu et al.’s scheme cannot resist the forgery attack
launched by the attackers who only can obtain public
information.

2) Second, we improve Liu et al.’s scheme to achieve
a secure signature aggregation. The improved CLAS
scheme is proven to be existentially unforgeable against
chosen message attack (CMA) under the random ora-
cle model. Concretely, the improved scheme is secure
against the public key replacement attack launched by
external attackers, as well as the attack launched by a
malicious medical server (MS).

3) Third, the aggregate signature length of our proposal is
constant, which costs a few communication resources.

4) Finally, we analyze the execution efficiency and commu-
nication complexity of the proposed scheme. The com-
parison results show that our scheme is more efficient
than related works [7]–[10].

The remainder of this article is organized as follows. We
review the related work in Section II and introduce some
background knowledge in Section III. The system model and
security model of the proposed CLAS scheme for HWMSN
are given in Section IV. The descriptions and security analysis

of Liu et al.’s scheme are given in Section V. We present our
improved CLAS scheme and corresponding security proofs in
Section VI. The computational and communication analyses
and the comparison of related works are shown in Section VII.
Finally, we conclude in Section VIII.

II. RELATED WORK

In 2003, Boneh et al. [11] and Al-Riyami and Paterson [12]
first introduced the concepts of aggregate signature and certifi-
cateless public key cryptosystem, respectively. In a multiuser
environment, aggregate signature could enhance the efficiency
of signature verification and reduce the bandwidth cost of
signature transmission. For the certificateless public key cryp-
tosystem, it solves the problem of certificate management in the
traditional public key infrastructure-based cryptosystem, and
overcomes the inherent key escrow issue in the identity-based
cryptosystem. It is a matter of course to combine such two
powerful cryptographic tools to maximize their advantages.

In 2007, Castro and Dahab [4] presented the first CLAS
scheme with bilinear pairing. In the same year, Gong et al. [13]
proposed two CLAS schemes from bilinear maps. However,
the computational complexity of these schemes is too high,
since the number of involved bilinear pairing operations is lin-
ear. To overcome the deficiency, Xiong et al. designed a CLAS
scheme with constant pairing operations. Unfortunately, a
security flaw was discovered in their scheme by Tu et al. [14],
Cheng et al. [15], and He et al. [16], respectively. In addition,
Li et al. [7] pointed out that He et al.’s improved scheme [16]
is still hard to resist a malicious key generation center (KGC).
Successively, some existing schemes have also been pointed
out as potential safety hazards. Zhang et al. [17] indicated
that Chen et al.’s [18] scheme cannot resist the public key
replacement attack and a malicious KGC. At the same time,
Liu et al.’s [19] scheme was found to be insecure in [17].

On the other hand, researchers have also focused on
the scenarios where the CLAS scheme is suitable for
application, such as vehicular ad-hoc networks [20]–[24],
HWMSN [5], [6], [8], [9], [25], [26], and so on. For a
novel CLAS scheme constructed by Malhi and Batra [20],
Kumar and Sharma [21] successfully designed an attack algo-
rithm to forge a signature, and proposed an improved scheme.
Yang et al. suggested that Kumar et al.’s scheme did not
achieve the expected security goal. In 2017, Kumar et al. [25]
came up with a CLAS scheme specifically for the scene of
HWMSN. However, their scheme was broken by Wu et al. [27]
and Zhan and Wang [28], respectively.

Due to the bilinear pairing operation costs a lot of compu-
tational resources, the efficiency of the CLAS scheme needs
to be further improved to better fit the resource-limited sen-
sor nodes. Xie et al. [9], Cui et al. [24], and Qu and Mu [29]
successively put forward CLAS schemes without pairing. They
adopted the additive elliptic curve group to avoid using bilin-
ear pairing. However, the schemes [24], [29] were proved to
be insecure by Du et al. [8].

In addition to HWMSN, there is also a healthcare system
based on IoT named Healthcare IoT Network [30]. The infras-
tructures of the two systems are similar. The difference is that
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Fig. 1. Framework of CLAS for HWSN.

the cloud server in Healthcare IoT Network is a semi-trusted
third party, while the MS in HWMSN is much more trusted
than the cloud. Healthcare IoT Network aims at the scene that
the user’s healthcare data is stored and shared through the
cloud server. The scenario targeted by HWMSN is that MS
is in charge of collecting user data and transmitting it to the
authorized healthcare professional (AHP) for analysis.

III. PRELIMINARIES

In this section, we briefly discuss some necessary back-
ground knowledge.

For a prime order finite field Fq(q > 3), an elliptic curve
E over Fq is defined as the set of points P = (x, y) [31],
[32], where x and y are the solutions of the equation E : y2 =
x3 + ax + b( mod q). In particular, a and b are constants in
Fq and satisfy 4a3 + 27b2 �= 0( mod q). There is an infin-
ity point O that makes the set of points be a group G, i.e.,
G = |P = (x, y)|x, y satify the above equation| ∪ |O|. Based
on the elliptic curve, there is the following assumption of
intractability problem..

Elliptic Curve Discrete Logarithm Problem (ECDLP):
Given a point pair (P, Q) ∈ G × G, find z from Z

∗
q such that

Q = zP.

IV. SYSTEM MODEL AND SECURITY MODEL OF THE

CLAS SCHEME FOR HWMSN

A. System Model of the CLAS Scheme for HWMSN

As shown in Fig. 1, there are four parties involved in a
CLAS scheme for HWMSN, including MSNs, cluster head
(CH), MS, and AHPs [5], [6]. The descriptions of these parties
are given as follows.

1) MSNs: MSNs are resources-limited devices installed on
the surface or inside of a patient’s body to collect health-
care data. While transmitting the sensitive messages to
the corresponding CH, each MSN signs the message
with its own secret key and sends the signature to the
CH.

2) CH: MSNs on the same patient correspond to a CH
which is responsible for data pretreatments. After receiv-
ing the messages and signatures from MSNs, the CH

aggregates all signatures into one aggregate signature,
and integrates all messages. Finally, the CH sends the
aggregate signature and messages to MS.

3) MS: MS is in charge of receiving and verifying the valid-
ity of messages. Specifically, MS uses the public keys of
MSNs to verify the aggregate signature. If the aggregate
signature is valid, which implicates that all signatures are
legal, MS sends the patient’s healthcare data to AHPs.

4) AHP: AHPs with professional medical knowledge make
diagnosis and treatment plan based on the received
patient’s data.

B. Related Algorithm

As introduced in [5], [6], [15], and [33], a CLAS scheme is
composed of seven algorithms, which are described as follows.

MasterKeyGen: Take a security parameter k as input, this
algorithm outputs the master secret key msk and system
parameters params.

PartialKeyGen: Input the system parameters params, the
master secret key msk, and the real identity RIDi of a sensor
node MSNi. This algorithm outputs a partial private key Di

and a pseudo identity IDi for MSNi. The pseudo identity is
used to prevent the disclosure of real identities, which further
protects users’ privacy.

UserKeyGen: Enter the identity IDi of a sensor node MSNi.
This algorithm outputs a public/secret key pair (pki, ski) for
MSNi.

Sign: Input the identity IDi, the secret key ski, the partial
private key Di of a sensor node MSNi, and a message mi. This
algorithm outputs a single signature σi on mi.

Verify: With the inputs of a signature σi, a message mi,
and the public key pki under IDi of a sensor node MSNi, this
algorithm outputs Ture if the signature σi is valid, or a symbol
⊥ otherwise.

Aggregate: Input n signatures {σi, i = 1, . . . , n}, and n mes-
sages {mi, i = 1, . . . , n}. This algorithm outputs an aggregate
signature σ on {mi, i = 1, . . . , n}.

AggregateVerify: Input an aggregate signature σ , n mes-
sages {mi, i = 1, . . . , n}, n public keys {pki, i = 1, . . . , n}
under {IDi, i = 1, . . . , n}. This algorithm outputs Ture if the
aggregate signature σ is valid, or a symbol ⊥ otherwise.

C. Security Models for CLAS Scheme

A CLAS scheme is existentially unforgeable against CMAs
if it can resist two types adversaries, i.e., Type I and Type II
adversaries.

1) Type I Adversary: An “external” adversary who has
the ability to launch the public key replacement attack.
Specifically, the Type I adversary can compromise the
secret key of a sensor node or replace a node’s pub-
lic key with the value chosen by him. However, the
Type I adversary cannot obtain the master secret key
or the partial private keys of sensor nodes.

2) Type II Adversary: An “internal” adversary, i.e., mali-
cious MS, who owns the master secret key. The Type II
adversary cannot compromise the secret keys or replace
the public keys of sensor nodes.
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The CMA security model for CLAS schemes consists of
four games. Before delving into the details of games, we intro-
duce the following oracles provided by the challenger that
adversaries can query.

1) Create User Oracle OCU (IDi): When adversaries query
this oracle, the challenger runs UserKeyGen(IDi) →
(pki, ski) and PartialKeyGen(msk, IDi) → Di. Then,
the challenger records (pki, ski, Di, IDi) in a list L and
returns the public key pki.

2) Secret Key Oracle OSK(IDi): When adversaries
query this oracle, the challenger finds the tuple
(pki, ski, Di, IDi) from the list L, then returns the secret
ski as the query result.

3) Partial Private Key Oracle OPPK(IDi): When adversaries
query this oracle, the challenger searches the list L to
find (pki, ski, Di, IDi). Then, the challenger returns the
partial private key Di as the query result.

4) Replace Key Oracle ORK(IDi,pk′
i,sk′

i): When adversaries
query this oracle, the challenger finds (pki, ski, Di, IDi)

from the list L and replaces this record with
(pk′

i, sk′
i, Di, IDi).

5) Sign Oracle OS(mi,IDi): When adversaries query this
oracle, the challenger executes as follows.

a) If there is no record about IDi in the list L, return
a symbol ⊥ as the result.

b) Otherwise, find the current public/secret key pair
from the list L, and return the result of running
Sign(IDi, ski, Di, mi).

Game I and Game II are aimed at the security of the single
signature in the CLAS scheme.

Game I: In this game, A1 is a probability polynomial time
(PPT) Type I adversary.

Setup: In this phase, the challenger C1 executes
MasterKeyGen with a security parameter k to produce
the master secret key msk and system parameters params.
Then, C1 keeps msk secretly and sends params to A1.

Query: In the query phase, the adversary A1 makes queries
on the oracles OCU , OSK , OPPK, ORK, and OS.

Forgery: In the final phase, A1 chooses a target sensor node
MSN∗

i with the identity ID∗
i and the public key pk∗

i , then out-
puts σ ∗ as a forged signature on m∗

i . A1 wins the game if the
result of Verify(σ ∗, m∗

i , pk∗
i , ID∗

i ) is True and
1) OS(m∗

i , ID∗
i ) has never been queried;

2) OPPK(ID∗
i ) has never been queried.

Game II: This game is executed between a PPT Type II
adversary A2 and the challenger C2.

Setup: The differences from the Setup phase in the Game I
is that the algorithm MasterKeyGen is performed by A2. Then,
A2 transmits the master secret key msk and system parameters
params to C2.

Query: In the query phase, the adversary A2 makes queries
on the oracles OCU , OSK , ORK, and OS.

Forgery: After selecting a target sensor node with ID∗
i and

pk∗
i , A2 outputs σ ∗ as a forged signature on m∗

i . A2 wins the
game if the result of Verify(σ ∗, m∗

i , pk∗
i , ID∗

i ) is True and
1) OS(m∗

i , ID∗
i ) has never been queried;

2) OSK(ID∗
i ) has never been queried;

3) ORK(ID∗
i , pk′

i, sk′
i) has never been queried.

Game III and Game IV focus on the security of the
aggregate signature in the CLAS scheme.

Game III: A PPT Type I adversary A1 and the challenger
C3 play the following game.

The Setup and Query phases are the same as in the Game I.
Forgery: In this phase, A1 chooses a target set of sen-

sor nodes U∗ = {MSN∗
1, MSN∗

2, . . . , MSN∗
n}. The corre-

sponding sets of identities and public keys are ID∗ =
{ID∗

i , ID∗
2, . . . , ID∗

n} and PK∗ = {pk∗
1, pk∗

2, . . . , pk∗
n}, respec-

tively. After that, A1 outputs an aggregate signature σ ∗ on
M∗ = {m∗

1, m∗
2, . . . , m∗

n} and wins the game if the following
conditions are satisfied.

1) AggregateVerify(σ ∗,M∗,PK∗, ID∗) → True.
2) At least one identity ID∗

j that has not been queried for
OS(m∗

j , ID∗
j ) and OPPK(ID∗

j ).
Game IV: The game played by a PPT Type II adversary A2

and the challenger C4 is described as follows.
The Setup and Query phases are the same as in the Game II.
Forgery: In this phase, A2 outputs an aggregate signature σ ∗

on M∗ = {m∗
1, m∗

2, . . . , m∗
n}, and states the target set of sen-

sor nodes U∗ = {MSN∗
1, MSN∗

2, . . . , MSN∗
n}. The identities of

the target sensor nodes and the corresponding public keys are
ID∗ = {ID∗

i , ID∗
2, . . . , ID∗

n} and PK∗ = {pk∗
1, pk∗

2, . . . , pk∗
n},

respectively. A2 wins the game if the following conditions
hold.

1) AggregateVerify(σ ∗,M∗,PK∗, ID∗) → True.
2) At least one identity ID∗

j has not been queried for
OS(m∗

j , ID∗
j ), OSK(ID∗

j ) and ORK(ID∗
j , pk′

j, sk′
j).

If the probabilities that any PPT Type I adversary wins
the Game I and Game III are negligible, and the probabili-
ties that any PPT Type II adversary wins the Game II and
Game IV are negligible, the CLAS scheme is believed to be
CMA secure.

V. DESCRIPTION AND SECURITY ANALYSES OF THE

CLAS SCHEME PROPOSED BY LIU et al.

A. Liu et al.’s CLAS Scheme

In this section, we briefly review the improved CLAS
scheme proposed by Liu et al. [6]. The details of their scheme
are described as follows.

1) MasterKeyGen: The system is bootstrapped by MS.
First, MS selects a group G of order q and a gener-
ator P according to the security parameter k, where q
is a prime. After that, MS randomly selects s ∈ Z

∗
q

as the master secret key msk, and calculates the cor-
responding public key as Ppub = sP. Then, MS chooses
five secure hash functions H, H1, H2, H3, H4, where
H : G × G → Z

∗
q, H1 : {0, 1}∗ × G × G → Z

∗
q,

H2 : {0, 1}∗ × {0, 1}∗ × G → Z
∗
q, and H3, H4 : {0, 1}∗ ×

{0, 1}∗ × G × {0, 1}∗ → Z
∗
q. Finally, MS makes the

parameters params = {G, q, P, Ppub, H, H1, H2, H3, H4}
public, and holds the master secret key s on its own.

2) PartialKeyGen: Given the public parameters params, the
master secret key s and the real identity RIDi of a MSNi,
MS randomly selects ri ∈ Z

∗
q and computes Ri = riP,

IDi = RIDi ⊕ H(riPpub, Ti), h1i = H1(IDi, Ri, Ppub)

and di = ri + sh1i mod q in turn, where Ti denotes
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the pseudo identity IDi validity time period. Then, MS
sets the partial private key as Di = (di, Ri) and sends
(IDi, Ti, Di) to the MSNi secretly. The MSNi verifies
the valid of the partial private key by checking whether
diP = Ri + h1iPpub holds.

3) UserKeyGen: The MSNi with IDi randomly selects xi ∈
Z

∗
q. Then, the secret key of the MSNi is set as ski =

(xi, di), and the corresponding public key is set as pki =
(Xi, Ri) = (xiP, riP).

4) Sign: The operations that the MSNi signs a message mi

at time ti are given as follows.
a) Randomly select y1i ∈ Z

∗
q and compute Y1i = y1iP.

b) Compute ui = H2(mi, IDi, Y1i), h3i = H3(mi, IDi,

pki, ti) and h4i = H4(mi, IDi, pki, ti).
c) Compute Wi = [ui(y1i + h3ixi) + h4idi]P.
d) Output σi = (Y1i, Wi) as the signature on mi||ti.

5) Verify: The CH uses the public key pki on IDi to verify
a signature σi on mi||ti through following steps.

a) Compute ui = H2(mi, IDi, Y1i), h3i = H3(mi, IDi,

pki, ti), and h4i = H4(mi, IDi, pki, ti).
b) The signature is valid if the following equation

holds:

Wi − ui(Y1i + h3iXi) = h4i(Ri + h1iPpub).

6) Aggregate: The CH computes an aggregate signature
with n signatures {σi, i = 1, . . . , n} on n messages
{mi||ti, i = 1, . . . , n} from n MSNs as follows.

a) Compute

Y =
n∑

i=1

uiY1i =
n∑

i=1

H2(mi, IDi, Y1i)Y1i.

b) Compute W = ∑n
i=1 Wi.

c) Set the aggregate signature as σ = (Y, W).
7) AggregateVerify: To verify an aggregate signature σ

signed by n MSNs on mi||ti, i = 1, . . . , n, MS performs
the following operations.

a) Compute h1i = H1(IDi, Ri, Ppub), h3i = H3(mi,

IDi, pki, ti) and h4i = H4(mi, IDi, pki, ti), i =
1, . . . , n.

b) Compute U = ∑n
i=1 uih3iXi.

c) Accept the signature if

W − Y − U =
n∑

i=1

h4i(Ri + h1iPpub)

holds.

B. Cryptanalysis of Liu et al.’s CLAS Scheme

Liu et al. set ui = H2(mi, IDi, Y1i) to enhance the connec-
tion between ui and the other part of a signature. Through
this way, ui becomes verifiable and hard to be tampered with.
However, they compute Wi as a point over the elliptic curve
E which damages this connection and the effect of the secret
keys (xi, di). Hence, an adversary A could forge a valid sig-
nature on an arbitrary message mi||ti even without obtaining
an existing signature.

1) Randomly select y1i ∈ Z
∗
q and compute Y1i = y1iP.

2) Compute ui = H2(mi, IDi, Y1i).
3) Compute h1i = H1(IDi, Ri, Ppub), h3i = H3(mi, IDi,

pki, ti) and h4i = H4(mi, IDi, pki, ti).
4) Compute

Wi = ui(Y1i + h3iXi) + h4i(Ri + h1iPpub).

5) Output a forged signature as σi = (Y1i, Wi).
Hence, a valid signature can be forged through only using

public information. Obviously, the reason for this is that Wi

is not a member in Z
∗
q but a point over the elliptic curve

E. Thereafter, the most intuitive way to modify the scheme
is to replace Wi with wi = (ui(y1i + h3ixi) + h4idi) mod q.
In this way, the signature on mi||ti is set as σi = (Y1i, wi),
and the corresponding verification algorithm is changed to the
following form.

1) Compute ui = H2(mi, IDi, Y1i), h1i = H1(IDi, Ri, Ppub),
h3i = H3(mi, IDi, pki, ti) and h4i = H4(mi, IDi, pki, ti).

2) The signature is valid if the following equation holds:

wiP − ui(Y1i + h3iXi) = h4i(Ri + h1iPpub).

With this modification, Liu et al.’s CLAS scheme can
prevent such adversaries from forging signatures. However, the
modified scheme is still insecure against the Type II adversary.

Suppose A is a Type II adversary. Given the master key
s, the partial private key Di = (di, Ri), a signature σi =
(Y1i, ui, wi) on a message mi||ti, A generates a signature on
m′

i||t′i as follows.
1) Compute h3i = H3(mi, IDi, pki, ti) and h4i =

H4(mi, IDi, pki, ti).
2) Compute h′

3i = H3(m′
i, IDi, pki, t′i) and h′

4i = H4(m′
i,

IDi, pki, t′i).
3) Compute ui = H2(mi, IDi, Y1i).
4) Set Y ′

i1 = h′
3ih

−1
3i Y1i = h′

3ih
−1
3i y1iP.

5) Compute

δ = (h′
3ih

−1
3i )

[
u−1

i (wi − h4idi)
]

mod q

= (h′
3ih

−1
3i )

[
u−1

i ((ui(y1i+h3ixi)+h4idi)−h4idi)
]
mod q

= (h′
3ih

−1
3i )y1i + h′

3ixi mod q.

6) Compute u′
i = H2(m′

i, IDi, Y ′
1i).

7) Compute

w′
i = u′

iδ + h′
4idi mod q

= u′
i

[
(h′

3ih
−1
3i y1i) + h′

3ixi

]
+ h′

4idi mod q.

8) Set σ ′ = (Y ′
1i, w′

i) as a forged signature on m′
i||t′i.

The correctness of the valid signature σ ′ is easy to verify.
The reason why the scheme is insecure against the Type II
adversary is that ui can be easily removed from ui(y1i +h3ixi).

VI. OUR PROPOSAL

In this section, we proposed an improved CLAS scheme
based on the ECDLP assumption to solve the security issue of
Liu et al.’s scheme, and the security analysis will be presented
later.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:40:03 UTC from IEEE Xplore.  Restrictions apply. 



5978 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021

A. Improved CLAS Scheme

In our improved scheme, we modify the way of signing and
the definitions of hash functions to enhance the security.

1) MasterKeyGen: Given a security parameter k, MS selects
a group G of prime order q and a generator P. Then,
MS randomly selects s ∈ Z

∗
q as the master secret

key, and sets Ppub = sP, chooses four secure hash
functions H, H1, H2, H3, where H : G × G → Z

∗
q,

H1 : {0, 1}∗ × G × G → Z
∗
q, H2 : {0, 1}∗ × {0, 1}∗ ×

G × {0, 1}∗ × G → Z
∗
q, and H3 : {0, 1}∗ × {0, 1}∗ ×

G × {0, 1}∗ → Z
∗
q. Finally, the system parameters are

params = {G, q, P, Ppub, H, H1, H2, H3} and the master
secret key is s.

2) The algorithms PartialKeyGen and UserKeyGen are
the same with the corresponding parts in Liu et al.’s
schemes.

3) Sign: The MSNi signs a message mi at time ti as follows.
a) Choose a random value yi ∈ Z

∗
q and compute

Yi = yiP.
b) Compute ui = H2(mi, IDi, pki, ti, Yi) and h3i =

H3(mi, IDi, pki, ti).
c) Compute wi = [uiyi + h3i(xi + di)] mod q.
d) Output σi = (Yi, wi) as the signature on mi||ti.

4) Verify: The CH verifies a signature σi on mi||ti with a
public key pki on IDi as follows.

a) Compute h1i = H1(IDi, Ri, Ppub), ui = H2(mi, IDi,

pki, ti, Yi) and h3i = H3(mi, IDi, pki, ti).
b) Accept the signature if

wiP − uiYi = h3i(Xi + Ri + h1iPpub)

holds.
5) Aggregate: Given n signature {σi, i = 1, . . . , n} on n

messages {mi||ti, i = 1, . . . , n} form n MSNs, the CH
generates an aggregate signature as follows.

a) Compute ui = H2(mi, IDi, pki, ti, Yi), i = 1, . . . , n.
b) Compute U = ∑n

i=1 uiYi.
c) Compute w = ∑n

i=1 wi.
d) Output the aggregate signature σ = (U, w).

6) AggregateVerify: Given an aggregate signature σ on
{mi||ti, i = 1, . . . , n}, and n public keys {pki, i =
1, . . . , n} on identities {IDi, i = 1, . . . , n}, MS performs
the following operations.

a) Compute h1i = H1(IDi, Ri, Ppub), and h3i =
H3(mi, IDi, pki, ti), i = 1, . . . , n.

b) Accept the signature if

wP − U =
n∑

i=1

h3i(Xi + Ri + h1iPpub)

holds.
Correctness:

wiP − uiY1i = [
uiy1i + h3i(xi + di)

]
P − uiY1i

= uiy1iP + h3i(xiP + diP) − uiY1i

= h3i(Xi + Ri + h1iPpub).

B. Security Analysis

As mentioned in the security model for CLAS schemes, it
needs to prove that there is no PPT adversaries could win the
Games I–IV with nonnegligible probabilities, respectively.

Theorem 1: In the random oracle model, the single signa-
ture in our improved CLAS scheme is CMA secure under the
assumption that the ECDLP in G is intractable.

Proof: This theorem is derived from the Lemmas 1
and 2.

Lemma 1: If there exists a PPT Type I adversary A1 could
forge a valid signature after querying OCU qCU times, querying
OSK qSK times, querying OPPK qPPK times, querying ORK qRK

times, querying OS qS times, querying the random oracles H,
H1, H2, and H3, qH , qH1 , qH2 , qH3 times, respectively, then the
ECDLP in G can be solved in polynomial time.

Proof: Given an instance of ECDLP (P, Q = zP) ∈
G × G, where z is randomly selected from Z

∗
q. Suppose the

probability that A1 forges a valid signature successfully is
ε, then an algorithm C1 that can obtain z from (P, Q) in
polynomial time is constructed as follows.

Setup: In this phase, C1 randomly selects s ∈ Z
∗
q as the

master secret key msk, and calculates Ppub = sP. Then,
C1 sends params = {G, q, P, Ppub} to A1 and keeps msk
secretly.

Query: In the query phase, the adversary A1 is allowed to
make queries on the oracles OCU , OSK , OPPK, ORK , OS, H,
H1, H2, and H3. C1 responses the queries as follows.

1) H(riPpub,Ti): C1 maintains an initially empty list L0.
On receiving a query H(riPpub, Ti), C1 directly returns
h0i to A1 if there exists a tuple (riPpub, Ti, h0i) in L0.
Otherwise, C1 randomly selects h0i ∈ Z

∗
q and records

(riPpub, Ti, h0i) in L0. Then, C1 returns h0i to A1.

2) H1(IDi,Ri, Ppub): After receiving a query
H1(IDi, Ri, Ppub), C1 finds the item (IDi, Ri, Ppub, h1i)

from the initially empty list L1 and returns h1i to A1.
If there is no such item, C1 randomly selects h1i ∈ Z

∗
q

and records (IDi, Ri, Ppub, h1i) in L1. Then, C1 returns
h1i to A1.

3) H2(mi, IDi,pki,ti,Yi): When A1 submits a query
H2(mi, IDi, pki, ti, Yi), C1 recovers the item
(mi, IDi, pki, ti, Yi, h2i) from a maintained list L2
and returns h2i as the result. If C1 fails to do that, C1
selects h2i ∈ Z

∗
p randomly and adds it to L2. Finally,

h2i is sent to A1.

4) H3(mi,IDi,pki,ti): When A1 submits a query
H3(mi, IDi, pki, ti), if there is an item
(mi, IDi, pki, ti, h3i) in the list L3, C1 returns h3i

as the query result. Otherwise, C1 randomly chooses
h3i ∈ Z

∗
p and adds it to L3 before sending it to A1.

5) OCU(IDi): When A1 queries this oracle, C1 finds
the record about IDi in the list LCU , then returns
(IDi, pki) = (IDi, Ri, Xi) to A1. If there is no such
record, C1 uses the Coron’s skill [34] to select a bit ξi ∈
{0, 1}, where Pr [ξi = 1] = θ and Pr [ξi = 0] = 1 − θ . If
ξi = 1, C1 executes as follows.
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a) Randomly select xi, ri ∈ Z
∗
q and compute Xi = xiP,

Ri = riP.
b) Query H(riPpub, Ti) to get h0i.
c) Set RIDi = IDi and compute IDi = RIDi ⊕ h0i.
d) Query H1(IDi, Ri, Ppub) to obtain h1i.
e) Compute di = ri + sh1i mod q.
f) Record (ξi, IDi, RIDi, ri, Ri, di, xi, Xi) in the list

LCU .
If ξi = 0, C1 preforms the following operations.

a) Randomly select xi ∈ Z
∗
q and compute Xi = xiP.

b) Set Ri = Q.
c) Obtain h0i by querying H(sQ, Ti).
d) Set RIDi = IDi and compute IDi = RIDi ⊕ h0i.
e) Record (ξi, IDi, RIDi,−, Ri,−, xi, Xi) in the

list LCU .
Finally, C1 returns (IDi, Ri, Xi) to A1.

6) OSK(IDi): When A1 queries this oracle, if there is no
record about IDi in LCU , C1 returns a random number
z′ ∈ Z

∗
q and aborts. Otherwise, C1 returns xi to A1.

7) OPPK(IDi): When A1 queries this oracle, if there is no
record about IDi in LCU or the corresponding ξi = 0, C1
returns a random number z′ ∈ Z

∗
q and aborts. Otherwise,

C1 returns di to A1.

8) ORK(IDi, pk′
i, sk′

i): When A1 queries this oracle, if there
is no record about IDi in LCU , C1 returns a random num-
ber z′ ∈ Z

∗
q and aborts. Otherwise, C1 replaces (xi, Xi)

in the record with (sk′
i, pk′

i).

9) OS(mi, IDi): After receiving the query, if any records
about IDi cannot be found in LCU , C1 returns a random
number z′ ∈ Z

∗
q and aborts. Otherwise, if ξi = 1, C1

returns the result of running Sign(IDi, xi, di, mi) to A1.
In the case ξi = 0, C1 executes as follows.

a) Randomly select wi, ui ∈ Z
∗
q.

b) Query H1(IDi, Ri, Ppub) and H3(mi, IDi, pki, ti) to
obtain h1i and h3i, respectively.

c) Compute Yi = u−1
i [wiP − h3i(Xi + Q + h1iPpub)].

d) If the item (mi, IDi, pki, ti, Yi, ui) already exists
in the list L2, C1 reselects a different ui ∈
Z

∗
q and performs step c). Otherwise, C1 adds

(mi, IDi, pki, ti, Yi, ui) to L2, and returns (Yi, wi)

to A1.
Forgery: In this phase, A1 chooses a target user with iden-

tity ID∗
i and a message m∗

i ||t∗i . We recall that A1 is forbidden
to query OS(m∗

i , ID∗
i ). If there is no record about ID∗

i in
the list LCU or the corresponding ξ∗

i = 1, C1 returns a
random number z′ ∈ Z

∗
q and aborts. Otherwise, A1 out-

puts a valid signature σ ∗
i = (Y∗

i , w∗
i ) on m∗

i ||t∗i such that
w∗

i P − u∗
i Y∗

i = h∗
3i(X

∗
i + Q + h∗

1iPpub). Then, with the Forking
Lemma [35], A1 outputs another valid signature σ ′

i = (Y∗
i , w′

i)

on m∗
i ||t∗i with the same random tapes y∗

i and different hash
value h′

3i, i.e.,

w∗
i = u∗

i y∗
i + h∗

3i(x
∗
i + d∗

i ) mod q

= u∗
i y∗

i + h∗
3i(x

∗
i + z′ + sh∗

1i) mod q

= u∗
i y∗

i + h∗
3ix

∗
i + h∗

3iz
′ + h∗

3ish∗
1i mod q

and

w′
i = u∗

i y∗
i + h′

3i(x
∗
i + d∗

i ) mod q

= u∗
i y∗

i + h′
3i(x

∗
i + z′ + sh∗

1i) mod q

= u∗
i y∗

i + h′
3ix

∗
i + h′

3iz
′ + h′

3ish∗
1i mod q.

C1 computes

W = (w∗
i − h∗

3ix
∗
i − h∗

3ish∗
1i) − (w′

i − h′
3ix

∗
i − h′

3ish∗
1i)mod q

= h∗
3iz

′ − h′
3iz

′ mod q

and

z′ = W(h∗
3i − h′

3i)
−1 mod q.

The probability that C1 successfully obtains z form (P, zP)

is analyzed here. First, we define the following events.
1) P1: There is no interruption during the qPPK queries

launched by the adversary A1 to the oracle OPPK.
2) P2: In the Forgery phase, C1 does not abort.
3) P3: The challenger C1 does not abort in the complete

game.
In the game procedure, C1 simulates a real environment to

A1 if there is no interruption. Hence, σ ∗
i is a valid signature

on m∗
i ||t∗i when the event P3 occurs. Based on the condition

that Pr [ξi = 1] = θ and Pr [ξi = 0] = 1 − θ , the probability
of each event is as follows.

1) Pr [P1] ≥ θqPPK .
2) Pr [P2] ≥ 1 − θ .
3) Since P1, P2 are independent of each other

Pr [P3] = Pr [P1 ∧ P2] = Pr [P1] Pr [P2]

≥ θqPPK(1 − θ)

≥ 1

e(1 + qPPK)
.

It is worth mentioning that the function f (x) = xqPPK(1 − x)
gets the maximum value [1/e(1 + qPPK)] when x = [1/(1 +
qPPK)], where e is the base of natural logarithm. As a result,
the probability that C1 successfully obtains z is

Pr [z = z′] = Pr [z = z′|P3] Pr [P3] + Pr [z = z′|P3] Pr [P3]

= ε Pr [P3] + 1

q
Pr [P3]

≥ ε

e(1 + qPPK)
.

Hence, C1 can solve the ECDLP in G with a nonnegligible
probability in polynomial time.

Lemma 2: If there exists a PPT Type II adversary A2 could
forge a valid signature after querying OCU qCU times, querying
OSK qSK times, querying ORK qRK times, querying OS qS

times, querying the random oracles H, H1, H2, and H3, qH ,
qH1 , qH2 , qH3 times, respectively, then the ECDLP in G can be
solved in polynomial time.

Proof: Given an instance of ECDLP (P, Q = zP) ∈ G×G,
where z is randomly selected from Z

∗
q. Suppose the probability

that A2 forges a valid signature successfully is ε, then an
algorithm C2 that can obtain z from (P, Q) in polynomial time
is constructed as follows.
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Setup: In this phase, A2 randomly selects s ∈ Z
∗
q as the

master secret key msk, and calculates Ppub = sP. Then, A2
sends params = {G, q, P, Ppub} to C2.

Query: In the query phase, the adversary A2 is allowed to
make queries on the oracles OCU , OSK , ORK , OS, H, H1, H2
and H3. C2 responses the queries as follows.

1) The responses of querying the random oracles
H(riPpub, Ti), H1(IDi, Ri, Ppub), H2(mi, IDi, pki, ti, Yi),
and H3(mi, IDi, pki, ti) are the same as in Lemma 1.

2) OCU(IDi): When A2 queries this oracle, C2 finds
the record about IDi in the list LCU , then returns
(IDi, pki) = (IDi, Ri, Xi) to A2. Similar as in Lemma 1,
if there is no such record, C2 uses the Coron’s skill [34]
to pick a number ξi ∈ {0, 1}. In the case ξi = 1, C2
randomly selects xi ∈ Z

∗
q and computes Xi = xiP. In

another case ξi = 0, C2 sets Xi = Q. Then, C2 executes
as follows.

a) Randomly select ri ∈ Z
∗
q and compute Ri = riP.

b) Query H(riPpub, Ti) to get h0i.
c) Set RIDi = IDi and compute IDi = RIDi ⊕ h0i.
d) Query H1(IDi, Ri, Ppub) to obtain h1i.
e) Compute di = ri + sh1i mod q.
f) Record (ξi, IDi, RIDi, ri, Ri, di, xi, Xi) in

the list LCU if ξi = 1. Otherwise, record
(ξi, IDi, RIDi, ri, Ri, di,−, Xi) in the list LCU .

g) Return (IDi, Ri, Xi) to A2.
3) OSK(IDi): When A2 queries this oracle, if there is no

record about IDi in LCU or the corresponding ξi = 0, C1
returns a random number z′ ∈ Z

∗
q and aborts. Otherwise,

C2 returns xi to A2.
4) ORK(IDi, pk′

i, sk′
i): When A2 queries this oracle, if there

is no record about IDi in LCU or the corresponding
ξi = 0, C2 returns a random number z′ ∈ Z

∗
q and

aborts. Otherwise, C2 replaces (xi, Xi) in the record with
(sk′

i, pk′
i).

5) OS(mi, IDi): After receiving the query, if any records
about IDi cannot be found in LCU , C2 returns a random
number z′ ∈ Z

∗
q and aborts. Otherwise, if ξi = 1, C1

returns the result of running Sign(IDi, xi, di, mi) to A2.
In the case ξi = 0, C2 executes as follows.

a) Randomly select wi, ui ∈ Z
∗
q.

b) Query H1(IDi, Ri, Ppub) and H3(mi, IDi, pki, ti) to
obtain h1i and h3i, respectively.

c) Compute Yi = u−1
i [wiP − h3i(Q + Ri + h1iPpub)].

d) If the item (mi, IDi, pki, ti, Yi, ui) already exists
in the list L2, C1 reselects a different ui ∈
Z

∗
q and performs step c). Otherwise, C2 adds

(mi, IDi, pki, ti, Yi, ui) to L2, and returns (Yi, wi)

to A2.
Forgery: In this phase, A2 chooses a target user with iden-

tity ID∗
i and a message m∗

i ||t∗i . It is worth mentioning that
A2 is forbidden to query OS(m∗

i , ID∗
i ). If there is no record

about ID∗
i in the list LCU or the corresponding ξ∗

i = 1, C2
returns a random number z′ ∈ Z

∗
q and aborts. Otherwise, A2

outputs a valid signature σ ∗
i = (Y∗

i , w∗
i ) on m∗

i ||t∗i such that
w∗

i P − u∗
i Y∗

i = h∗
3i(Q + R∗

i + h∗
1iPpub). Then, with the Forking

Lemma [35], A2 outputs another valid signature σ ′
i = (Y∗

i , w′
i)

on m∗
i ||t∗i with the same random tape y∗

i and different hash

value h′
3i, i.e.,

w∗
i = u∗

i y∗
i + h∗

3i(z
′ + d∗

i ) mod q

= u∗
i y∗

i + h∗
3i(z

′ + r∗
i + sh∗

1i) mod q

= u∗
i y∗

i + h∗
3iz

′ + h∗
3ir

∗
i + h∗

3ish∗
1i mod q

and

w′
i = u∗

i y∗
i + h′

3i(z
′ + d∗

i ) mod q

= u∗
i y∗

i + h′
3i(z

′ + r∗
i + sh∗

1i) mod q

= u∗
i y∗

i + h′
3iz

′ + h′
3ir

∗
i + h′

3ish∗
1i mod q.

C2 computes

W = (w∗
i −h∗

3ir
∗
i −h∗

3ish∗
1i)−(w′

i−h′
3ir

∗
i −h′

3ish∗
1i)mod q

= h∗
3iz

′ − h′
3iz

′ mod q

and

z′ = W(h∗
3i − h′

3i)
−1 mod q.

Similarly, C2 simulates a real environment to A2 if there
is no interruption during whole game. Furthermore, there are
several events defined as follows.

1) P1: There is no interruption during the qSK queries
launched by the adversary A2 to the oracle OSK .

2) P2: There is no interruption during the qRK queries
launched by the adversary A2 to the oracle ORK .

3) P3: The challenger C2 does not abort during the Forgery
phase.

4) P4: The challenger C2 does not abort in the complete
game.

And the corresponding probabilities are as follows.
1) Pr [P1] ≥ θqSK .
2) Pr [P2] ≥ θqRK .
3) Pr [P3] ≥ 1 − θ .
4) The probability of the event P4 occurring is

Pr [P4] = Pr [P1 ∧ P2 ∧ P3]

= Pr [P1] Pr [P2] Pr [P3]

≥ θqSK+qRK (1 − θ)

≥ 1

e(1 + qSK + qRK)
.

Hence, the probability that C2 solves the ECDLP in G is

Pr [z = z′] = Pr [z = z′|P4] Pr [P4] + Pr [z = z′|P4] Pr [P4]

= ε Pr [P4] + 1

q
Pr [P4]

≥ ε

e(1 + qSK + qRK)

which is nonnegligible.
Theorem 2: In the random oracle model, the aggregate sig-

nature in our improved CLAS scheme is CMA secure under
the assumption that the ECDLP in G is intractable.

Proof: This theorem is derived from the Lemmas 3
and 4.

Lemma 3: If there exists a PPT Type I adversary A3 could
forge a valid aggregate signature, the ECDLP in G can be
solved in polynomial time. Suppose that A3 queries OCU

qCU times, queries OSK qSK times, queries OPPK qPPK times,
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queries ORK qRK times, queries OS qS times, queries the ran-
dom oracles H, H1, H2, and H3, qH , qH1 , qH2 , qH3 times,
respectively,

Proof: Given an instance of ECDLP (P, Q = zP) ∈ G×G,
where z is randomly selected from Z

∗
q. Suppose the proba-

bility that A3 forges a valid aggregate signature successfully
is ε, then an algorithm C3 that can obtain z from (P, Q) in
polynomial time is constructed as follows.

The Setup and Query phases are the same as described in
Lemma 1.

Forgery: A3 chooses a target set of users
with identities {ID∗

1, ID∗
2, . . . , ID∗

n} and messages
{m∗

1||t∗1, m∗
2||t∗2, . . . , m∗

n||t∗n}. Each ID∗
i should be found

in the list LCU . If all ξ∗
i = 1, C3 returns a random num-

ber z′ ∈ Z
∗
q and aborts. Otherwise, by using the Forking

Lemma [35], A3 outputs two valid aggregate signatures
σ ∗ = (U∗, w∗) and σ ′ = (U∗, w′). Without loss of generality,
it is assumed that ξ∗

1 corresponding to ID∗
1 is 0. Then, it has

w∗ =
n∑

i=2

w∗
i + w∗

1

=
n∑

i=2

w∗
i + u∗

1y∗
1 + h∗

31x∗
1 + h∗

31z′ + h∗
31sh∗

11 mod q

and

w′ =
n∑

i=2

w∗
i + w′

1

=
n∑

i=2

w∗
i + u∗

1y∗
1 + h′

31x∗
1 + h′

31z′ + h′
31sh∗

11 mod q.

Hence, C3 obtain z′ by calculating

W = (w∗−h∗
31x∗

1−h∗
31sh∗

11)−(w′−h′
31x∗

1−h′
31sh∗

11)mod q

and

z′ = W(h∗
31 − h′

31)
−1 mod q.

The probability that there is no interruption in the Forgery
phase is (1 − θn). Hence, as analyzed in Lemma 1, the prob-
ability that C3 successfully solves the ECDLP in G is larger
than εθqPPK(1 − θn).

Lemma 4: If there exists a PPT Type II adversary A4 could
forge a valid aggregate signature after querying OCU qCU

times, querying OSK qSK times, querying ORK qRK times,
querying OS qS times, querying the random oracles H, H1, H2
and H3, qH , qH1 , qH2 , qH3 times, respectively, then the ECDLP
in G can be solved in polynomial time.

Proof: Similarly, Given an instance of ECDLP (P, Q =
zP) ∈ G × G, where z is randomly selected from Z

∗
q. Suppose

the probability that A4 forges a valid signature successfully
is ε, then an algorithm C4 that can obtain z from (P, Q) in
polynomial time is constructed as follows.

The Setup and Query phases are the same as described in
Lemma 2.

Forgery: A4 chooses a target set of users with iden-
tities {ID∗

1, ID∗
2, . . . , ID∗

n} and messages {m∗
1||t∗1, m∗

2||t∗2, . . . ,
m∗

n||t∗n}. All identities {ID∗
i , i = 1, . . . , n} should be found in

the list LCU . If all ξ∗
i = 1, C4 returns a random number z′ ∈ Z

∗
q

and aborts. Otherwise, without loss of generality, it is assumed
that ξ∗

1 corresponding to ID∗
1 is 0. Then, A4 outputs two valid

aggregate signatures σ ∗ = (U∗, w∗) and σ ′ = (U∗, w′) with
the Forking Lemma [35]

w∗ =
n∑

i=2

w∗
i + w∗

1

=
n∑

i=2

w∗
i + u∗

1y∗
1 + h∗

31z′ + h∗
31r∗

1 + h∗
31sh∗

11 mod q

and

w′ =
n∑

i=2

w∗
i + w′

1

=
n∑

i=2

w∗
i + u∗

1y∗
1 + h′

31z′ + h′
31r∗

1 + h′
31sh∗

11 mod q.

After receiving σ ∗ and σ ′, C4 computes

W = (w∗
i −h∗

3ir
∗
i −h∗

3ish∗
1i)−(w′

i−h′
3ir

∗
i −h′

3ish∗
1i)mod q

and

z′ = W(h∗
3i − h′

3i)
−1 mod q.

Hence, C4 could solve the ECDLP with a probability of
more than εθqSK+qRK (1 − θn).

According to Theorems 1 and 2, our improved CLAS
scheme is CMA secure under the ECDLP assumption in
the random oracle model. Hence, the security require-
ments, including MessageAuthentication, MessageIntegrity,
and Nonrepudiation can be achieved directly. In addition,
the improved CLAS scheme also satisfies Anoymity and
Traceability.

For Anoymity and Traceability, a pseudo identity IDi is
adopted to prevent the information of the real identity RIDi

from being obtained by other sensor nodes or external attack-
ers. Furthermore, the pseudo identity is calculated as Ri = riP,
IDi = RIDi ⊕ H(riPpub, Ti). Hence, H(riPpub, Ti) cannot be
obtained without ri and s. However, ri is abandoned after cal-
culation and s is held in secret by MS. Other sensor nodes
and external attackers cannot know the real identity of the
sensor node, which guarantees Anoymity. MS could trace the
real identity with the master secret key if it is necessary, which
guarantees Traceability.

VII. PERFORMANCE ANALYSIS

In this section, we analyze the computational and commu-
nication costs of our improved CLAS scheme. The results of
comparison with related works are given to show the efficiency
of our proposal.

A. Computational Cost

In this section, we use the results of the single operation
execution time measured by Liu et al. to analyze the compu-
tational costs of the algorithms Sign, Verify, Aggregate, and
AggregateVerify in our scheme, respectively. The results are
given in Table I and Fig. 2.
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TABLE I
COMPARISON WITH RELATED WORK IN TERMS OF COMPUTATIONAL COST

TABLE II
EXECUTION TIME OF SINGLE OPERATION

Fig. 2. Comparison with related work in terms of verification efficiency.

Liu et al.’s measurement results [6] are given in Table II.
The situation they considered in bilinear pairing-based
schemes is a super singular elliptic curve. Specifically, the
elliptic curve E1 : y2 = x3 + x mod p1 is over the finite field
Fq1 . The bit length of q1 is 512 b. The bit length of the ele-
ment in the elliptic curve group G1 based on E1 is 1024 b. For
pairing-free schemes, they set a group G based on the Koblitz
elliptic curve E : y2 = x3 + ax + b mod p over a finite field
Zq. The bit length of q and the element in G are set to 160 b
and 320 b, respectively, to achieve the 1024 b RSA security
level.

We compare the computational costs of our proposal with
the related works that are still secure, including Zhang
and Zhang scheme [10], Li et al.’s scheme [7], Xie et al.’s
scheme [9], and Du et al.’s scheme [8]. The comparison results
are shown in Table I. The parameter n denotes the number
of MSNs. To generate a single signature on a message, our
scheme needs one ECC scalar multiplication operation and two

TABLE III
COMPARISON WITH RELATED WORK IN TERMS OF COMMUNICATION

COST

map-to-Z∗
q hash operations. The addition and multiplication

over Z
∗
q are too fast to ignore their time. Hence, the execution

time of signing a message is 2Tmz + Tecsm = 2 × 0.001784 +
0.165217 = 0.168785 ms. In the same way, the running time
of Verify is 3Tmz +4Tecsm +3Tecpa = 0.670432 ms. We mainly
consider the computational costs of resource-limited sensor
nodes. For CH and MS with strong computing power, we
combine the time spent in Aggregate and AggregateVerify to
compare with others, and the results are given in Fig. 2 for a
more intuitive display. Hence, as Table I and Fig. 2 show, our
scheme supports the rapid calculation of individual signatures
and verification of aggregate signatures.

B. Communication Cost

The elliptic curve group G we considered is over Koblitz
elliptic curve on Z

∗
q. In particular, the bit length of an element

of G is 320 b, and the bit length of q is 160 b. The single
signature of our scheme is in the form of (Yi, wi) ∈ G × Z

∗
q.

Hence, each sensor node only sends a 480 b message to the
CH. Compared with the schemes based on the bilinear pairing
whose single signature is 2048 b long, our scheme saves a lot
of communication costs for resource-limited sensor nodes. In
addition, the aggregate signature in our scheme is in the form
of (U, w) ∈ G×Z

∗
q whose bit length is a constant value, 480 b.

Table III shows the comparison results of communication costs
among our scheme with related works. The communication
complexity of our scheme is O(1), and the communication
complexity of the schemes [7]–[9] and [10] are O(n). It is clear
that the communication overheads of the proposed scheme is
much lower than related schemes.

Comprehensive the computational and communication
costs, our scheme is more efficient than [7]–[9] and [10].
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VIII. CONCLUSION

CLAS can provide an efficient message authentication func-
tion for HWMSN based on IoT. In this article, we have
analyzed the security of Liu et al.’s pair-free CLAS scheme,
and given the specific attack algorithm. To fix security holes
in their scheme, we have modified the sign algorithm. The
security analyses indicate that our improved CLAS scheme
is secure against both Type I and Type II adversaries. The
improved scheme is still based on ECC cryptosystem which
makes the signing faster and the signature length shorter. In
particular, the length of the aggregate signature in the proposed
scheme is fixed, which greatly reduce the communication
resources costs. The results of comparison with related works
show that our scheme is more effective in practice.
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